
Retrospective on SCRUM and Its Implementation in Five
Companies
Jeff Sutherland

CTO, PatientKeeper, Inc.

8 July 2001

Scrum was started for software teams at Easel Corporation in 1994 where I was VP of
Object Technology. We built the first object-oriented design and analysis tool that
incorporated round-trip engineering in the initial SCRUM. A second SCRUM
implemented the first product to completely automate object-relational mapping in an
enterprise development environment. I was assisted by two world-class developers, Jeff
McKenna, now an extreme programming (XP) consultant, and John Scumniotales, now a
development leader for object-oriented design tools at Rational Corporation.

In 1995, Easel was acquired by VMARK and Scrum continued there until I joined
Individual in 1996 as VP of Engineering. I asked Ken Schwaber to help me incorporate
Scrum into Individual’s development process. In the same year I took SCRUM to IDX
when I assumed the positions of Senior VP of Engineering and Product Development and
CTO. IDX, one of the largest healthcare software companies, was the proving ground for
multiple team SCRUM implementations. At one point, I had over 600 developers
workings on dozens of products. In 2000, I introduced Scrum to PatientKeeper, a
mobile/wireless healthcare platform company where I became CTO. So I have
experienced Scrum in five companies, with consulting assistance from Ken Schwaber in
three of those companies. These companies varyed widely in size and were proving
grounds for Scrum in all phases of company growth, from startup, to initial IPO, to mid-
size and then large company with a 30 year track record.

There were some key factors that influenced the introduction of Scrum at Easel
Corporation. The book “Wicked Problems, Righteous Solutions” (DeGrace and Stahl
1990) reviewed the reasons why the waterfall approach to software development does not
work for software development today. Requirements are not fully understood before the
project begins. The user knows what they want only after they see an initial version of the
software. Requirements change during the software construction process. And new tools
and technologies make implementation strategies unpredictable. DeGrace and Stahl
reviewed “All-at-Once” models of software development which uniquely fit object-
oriented implementation of software.

The team based “All-at-Once” model was based on the Japanese approach to new product
development, Sashimi and Scrum. We were already using production prototyping to build
software. It was implemented in slices (Sashimi) where an entire piece of fully integrated
functionality worked at the end of an iteration. What intrigued us was Takeuchi and
Nonaka’s description of the team building process in setting up and managing a Scrum
(Takeuchi and Nonaka 1986). The idea of building a self-empowered team where

everyone had the global view of the product being built seemed like the right idea. The
approach to managing the team which had been so successful at Honda, Canon, and
Fujitsu resonated with the systems thinking approach being promoted by Senge at MIT
(Senge 1990).

We were also impacted by recent publications in computer science. Peter Wegner at
Brown University demonstrated that it was impossible to fully specify or test an
interactive system which is designed to respond to external inputs, i.e. Wegner’s Lemma
(Wegner 1997). Here was mathematical proof that any process that assumed known
inputs, like the waterfall method, was doomed to failure when building an object-oriented
system. We were prodded into setting up the first Scrum meeting after reading Coplien’s
paper on Borland’s development of Quattro Pro for Windows. The Quattro team
delivered one million lines of C++ code in 31 months with a 4 person staff growing to 8
people later in the project. This was about a 1000 lines of deliverable code per person per
week, probably the most productive project ever documented. The team attained this
level of productivity by intensive interaction in daily meetings with project management,
product management, developers, documenters, and quality assurance staff.

Our daily meetings that we started at Easel were disciplined in the way we that we now
understand as the Scrum pattern (Beedle, Devos et al. 1999). The most interesting effect
in a Smalltalk development environment was “punctuated equilibrium”. A fully
integrated component design environment leads to rapid evolution of a software system
with emergent, adaptive properties resembling the process of punctuated equilibrium
observed in biological species.

It is well understood in biological evolution that change occurs sharply at intervals
separated by long periods of apparent stagnation, leading to the concept of punctuated
equilibrium (Dennett 1995). Computer simulations of this phenomenon suggest that
periods of equilibrium are actually periods of ongoing genetic change of an organism.
The effects of that change are not apparent until several subsystems evolve in parallel to
the point where they can work together to produce a dramatic external effect (Levy
1992). This punctuated equilibrium effect has been observed by teams working in a
component based environment with adequate business process engineering tools and the
Scrum development process accentuates the effect.

By having every member of the team see every day what every other team member was
doing, we began to get comments from one developer that if he changed a few lines of
code, he could eliminate days of work for another developer. This effect was so dramatic
that the project accelerated to the point where IT HAD TO BE SLOWED DOWN. This
hyperproductive state was seen in a several subsequent Scrums but never so dramatic as
the one at Easel. It was a combination of the skill of the team, the flexibility of Smalltalk,
and way we approached production prototypes that evolved into deliverable product.

Figure 1: Initial Scrum View of a Software System

A project domain can be viewed as a set of packages that will form a release. Packages
are what the user perceives as pieces of functionality and they evolve out of work on
topic areas. Topic areas are business object components. Changes are introduced into the
system by introducing a unit of work that alters a component. The unit of work in the
initial Scrum was called a Synchstep.

Figure 2: Firing a Synchstep

System evolution proceed in Synchsteps. After one or more Synchsteps have gone to
completion and forced some refactoring throughout the system, or often simply providing
new functionality to existing components, a new package of functionality emerges that is
observable to the user. These Synchsteps are similar to genetic mutations. Typically,
several interrelated components must mutate in concert to produce a significant new
piece of functionality. And this new functionality appears as a "punctuated equilibrium"
effect to builders of the system. For a period of time the system is stable with no new
behavior. Then when a certain (somewhat unpredictable) Synchstep completes, the whole
system pops up to a new level of functionality, often surprising the development team.

The key to entering a hyperproductive state was not just the Scrum organizational pattern.
We did constant component testing of topic areas, integration of packages, and
refactoring of selected parts of the system. These activities have become key features of
XP (Fowler 2001).

Furthermore, in the hyperproductive state, the initial Scrum entered the “zone”. No
matter what happened or what problems arose, the response of the team always was far
better than the response of any individual. It reminded me of the stories about the Celtics
basketball team at their peak where they could do no wrong. The impact of entering the
“zone” was not just hyperproductivity. Peoples personal lives were changed. People said
they would never forget working on such a project and they would always be looking for
another experience like it. It induced open, team oriented, fun loving behavior in
unexpected persons and eliminated those who were not productive from the team through
peer embarrassment.

When Easel Corporation was acquired by VMARK (now Informix), the original Scrum
team continued their work on the same product. The VMARK senior management team
was intrigued by Scrum and asked me to run a senior management team Scrum once a
week to drive all the companies products to the Internet. These meetings started in 1995
and within a few months, the team had caused the introduction of two new Internet
products and repositioned leading current products as Internet applications. Some
members of this team left VMARK to become innovators in emerging Internet
companies. So Scrum had an early impact on the Internet.

In the spring of 1996, I returned to a company I cofounded as VP of Engineering. Much
of the Scrum experience at Individual has been documented by Ken Schwaber. The most
impressive thing to me about Scrum at Individual was not that the team delivered two
new Internet products in a single quarter, and multiple releases of one of the products. It
was the fact that Scrum eliminated about 8 hours a week of senior management meeting
time starting the day the Scrum began. Because the company had just gone public at the
beginning of the Internet explosion, there were multiple competing priorities and constant
revision of market strategy. As a result, the development team was constantly changing
priorities and unable to deliver product. And the management team was meeting almost
daily to determine status of implementation of priorities that were viewed differently by
every manager.

The solution was to force all decisions to occur in the daily Scrum meeting. If anyone
wanted any status or wanted to influence any priority, they could only do it in the Scrum.
I remember in the early phase, the SVP of Marketing sat in on every meeting for a couple
of weeks sharing her desperate concern about meeting Internet deliverables and
timetables. The effect on the team was not to immediate respond to her despair. Over a
period of two weeks, the team self-organized around a plan to meet her priorities with
achievable technical delivery dates. When she agreed to the plan, she no longer had to
attend any Scrum or status meetings. The Scrum reported status on the web with green
lights, yellow lights, and red lights for pieces of functionality. In this way the entire
company knew status in real time, all the time.

During the summer of 1996, IDX Systems hired me away from Individual to be their
SVP of Engineering and Product Development. I replaced the technical founder of the
company who had led development for almost 30 years. IDX had over 4000 customers
and was one of the largest healthcare software companies with hundreds of developers
working on dozens of products. Here was an opportunity to extend Scrum to large scale
development.

The approach at IDX was to turn the entire development organization into an interlocking
set of Scrums. Every part of the organization was team based, including the management
team which included two Vice Presidents, a senior architect, and several Directors. Front
line Scrums met daily. A Scrum of Scrums which included the team leaders of each
Scrum in a product line met weekly. The management Scrum met monthly.

The key learning at IDX was that Scrum scales to any size. With dozens of teams in
operation, the most difficult problem is ensuring the quality of the Scrum process in each
team, particularly when the entire organization had to learn Scrum all at once. IDX was
large enough to bring in leading productivity experts to monitor productivity on every
project. While most teams where only able to meet the industry average in function
points per month delivered, several teams moved into a hyperproductive state producing
deliverable functionality at 4-5 times the industry average. These teams became shining
stars in the organization and examples for the rest of the organization to follow.

In early 2000, I joined PatientKeeper, Inc. as Chief Technology Officer and began
introducing Scrum into a startup company. I was the 21st employee and we grew the
development team from a dozen people to 45 people in six months. PatientKeeper
deploys mobile devices in healthcare institutions to capture and process financial and
clinical data. Server technology synchronizes the mobile devices and moves data to and
from multiple backend legacy systems. A complex technical architecture provides
enterprise application integration to hospital and clinical systems. Data is forward
deployed from these systems in a PatientKeeper clinical repository. Server technologies
migrate changes from our clinical repository to a cache and then to data storage on the
mobile device. Scrum works equally well across technology implementations. The key
learning at PatientKeeper has been around introduction of extreme programming
techniques as a way to implement code delivered by a Scrum organization. While all
teams seem to find it easy to implement a Scrum organizational process, they do not
always find it easy to introduce new XP programming. We have been able to do some
team programming and constant testing and refactoring, particularly as we have migrated
all development to Java and XML. It has been more difficult to introduce these ideas
when developers are working in C and C++, our legacy technology.

After introducing Scrum into five different companies with different sizes and different
technologies, I can confidently say that Scrum works in any environment and can scale
into programming in the large. In all cases, it will radically improve communication and
delivery of working code. The next challenge for Scrum, in my view, is to provide a tight
integration of the Scrum organization pattern and XP programming techniques. I believe
that this integration can generate more hyperproductive Scrums on a predictable basis.
The first Scrum did this intuitively before XP was born and that was its key to extreme
performance and life changing experience. In addition, the participation of Scrum leaders
in the Agile Alliance (Fowler and Highsmith 2001), which has absorbed all leaders of
well known lightweight development processes, will facilitate wider use of Scrum and its
integration with extreme programming.

Beedle, M., M. Devos, et al. (1999). SCRUM: A Pattern Language for Hyperproductive

Software Development. Pattern Languages of Program Design. N. Harrison,
Addison-Wesley. 4: 637-651.

DeGrace, P. and L. H. Stahl (1990). Wicked problems, righteous solutions : a catalogue
of modern software engineering paradigms. Englewood Cliffs, N.J., Yourdon
Press.

Dennett, D. C. (1995). Darwin’s dangerous idea : evolution and the meanings of life. New
York, Simon & Schuster.

Fowler, M. (2001). "Is Design Dead?" Software Development 9(4).
Fowler, M. and J. Highsmith (2001). "The Agile Manifesto." Software Development

9(8): 28-32.
Levy, S. (1992). Artificial life : the quest for a new creation. New York, Pantheon Books.
Senge, P. M. (1990). The fifth discipline : the art and practice of the learning

organization. New York, Doubleday/Currency.
Takeuchi, H. and I. Nonaka (1986). "The New New Product Development Game."

Harvard Business Review(January-February).
Wegner, P. (1997). "Why Interaction Is More Powerful Than Algorithms."

Communications of the ACM 40(5): 80-91.

